Multivariate Time Series Classification with WEASEL+MUSE
نویسندگان
چکیده
Multivariate time series (MTS) arise when multiple interconnected sensors record data over time. Dealing with this high-dimensional data is challenging for every classifier for at least two aspects: First, a MTS is not only characterized by individual feature values, but also by the co-occurrence of features in different dimensions. Second, this typically adds large amounts of irrelevant data and noise. We present our novel MTS classifier WEASEL+MUSE (Word ExtrAction for time SEries cLassification + MUltivariate Symbols and dErivatives) which addresses both challenges. WEASEL+MUSE builds a multivariate feature vector, first using a sliding-window approach applied to each dimension of the MTS, then extracts discrete features per window and dimension. The feature vector is subsequently fed through feature selection, removing non-discriminative features, and analysed by a machine learning classifier. The novelty of WEASEL+MUSE lies in its specific way of extracting and filtering multivariate features from MTS by encoding context information into each feature, resulting in a small, yet very discriminative feature set useful for MTS classification. Based on a popular benchmark of 20 MTS datasets, we found that WEASEL+MUSE is the most accurate domain agnostic classifier, when compared to the state of the art. The outstanding robustness of WEASEL+MUSE is further confirmed based on motion gesture recognition data, where it out-of-the-box achieved similar accuracies as domain-specific methods.
منابع مشابه
Application of multivariate techniques in-line with spatial regionalization of AOD over Iran
Application of multivariate techniques in-line with spatial regionalization of AOD over Iran Introduction Models, satellites and terrestrial datasets have been used to detect and characterize aerosol. Nontheless, micoscale classification using remote sensing parameters considers as a deficiency. Thus, regionalizion and modeling aerosol without regard to political boundaries or a specific s...
متن کاملEvaluation of Univariate, Multivariate and Combined Time Series Model to Prediction and Estimation the Mean Annual Sediment (Case Study: Sistan River)
Erosion, sediment transport and sediment estimate phenomenon with their damage in rivers is a one of the most importance point in river engineering. Correctly modeling and prediction of this parameter with involving the river flow discharge can be most useful in life of hydraulic structures and drainage networks. In fact, using the multivariate models and involving the effective other parameter...
متن کاملAn Empirical Comparison of Distance Measures for Multivariate Time Series Clustering
Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...
متن کاملMissing data imputation in multivariable time series data
Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...
متن کاملMultivariate LSTM-FCNs for Time Series Classification
Over the past decade, multivariate time series classification has been receiving a lot of attention. We propose augmenting the existing univariate time series classification models, LSTM-FCN and ALSTM-FCN with a squeeze and excitation block to further improve performance. Our proposed models outperform most of the state of the art models while requiring minimum preprocessing. The proposed model...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1711.11343 شماره
صفحات -
تاریخ انتشار 2017